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Power-law random walks
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In this paper, random walks with independent steps distributed according to a Q-power-law probability
distribution function with Q=1/(1—-¢) are studied. In the case ¢>1, we show that (i) a stochastic represen-
tation of the location of the walk after n steps can be explicitly given (for both finite and infinite variance) and
(ii) a clear connection with the superstatistics framework can be established (including the anomalous diffusion
case). In the case ¢<<1, we prove that this random walk can be considered as the projection of an isotropic
random walk, i.e., a random walk with fixed length steps and uniformly distributed directions. These results
provide a natural extension of (i) the usual Gaussian framework and (ii) the infinite-covariance case of the

superstatistics treatments.
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I. INTRODUCTION

The name “random walk” was originally proposed by
Pearson [1] with reference to a simple model to describe
mosquito infestation in a forest, although previous important
work in related subjects had already been published by Lord
Rayleigh. Around the same time, the theory of random walks
was also developed by Bachelier in a remarkable doctoral
thesis [1]. He proposed the random walk as the fundamental
model for financial time series, long before this idea became
the basis for modern theoretical finance. He also made the
connection between discrete random walks and the continu-
ous diffusion (or heat) equation, which is a major scientific
theme. Around the same time as Pearson’s work, Einstein
also published his seminal paper on Brownian motion (nor-
mal diffusion), a random walk driven by collisions with gas
molecules. Similar theoretical ideas were also published in-
dependently by Smoluchowski [1].

The statistical properties of random walks tend toward
universal distributions after large numbers of independent
steps. In the case of the concomitant probability distribution
function (PDF) for the final position, the result for isotropic
random walks is a multidimensional generalization of the
central limit theorem (CLT) for sums of independent, identi-
cally distributed (IID) random variables. When the assump-
tions of the central limit theorem break down, random walks
can exhibit rather different behavior from that of normal dif-
fusion. For instance, the limiting distribution for the position
of a Brownian particle may not be Gaussian. In particular,
power-law distributions become of paramount importance in
such a context. One way to violate the CLT with IID dis-
placements is via “heavy-tailed” probability distributions,
which assign sufficient probability to very large steps so that
the variance is infinite. In this context one speaks of anoma-
lous diffusion (AD). In an AD scenario power-law probabil-
ity distributions and power-law entropies become ubiquitous.
The associated literature is really vast: see, for instance,
Refs. [2-6] and references therein.
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In this paper we reconsider the distribution of a random
walk whose independent steps follow a power-law distribu-
tion of the g Gaussian type with exponent equal to
1/(1-g); g € R. In the case g>1 we show that a stochastic
representation of the point reached after n steps of the walk
can be expressed explicitly for all n so that the superstatistics
framework holds even in the anomalous diffusion case. In
the case g <1, we show that the ¢ Gaussian random walk can
be interpreted as a projection of an isotropic random walk,
i.e., a random walk with fixed length steps and uniformly
distributed directions.

II. THE CASE ¢>1

A random vector X € R? is of the ¢ Gaussian kind if its
probability density is

fX) =2, (1+ XA~ X))V (2.1)

where the number of degrees of freedom m, dimension p,
and nonextensivity parameter g are related as

2
m=——-p.

o (2.2)

This distribution has finite covariance matrix K=EXX"' pro-
vided that m>2 or equivalently ¢g<(p+4)/(p+2). In that
case, the covariance matrix is related to the scaling matrix A
in the fashion A=(m—2)K. Moreover, the partition function

Z, reads
1 -1
(.5)
Z, = 9 .

a 1
F<__1_’)|7TA|1/2
g-1 2

Note that the usual Gaussian distribution corresponds to the
limit case ¢— 17. We recall [7-9] that the random vector X
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can be expressed as the Gaussian scale mixture
Al2G

\a

X= (2.3)

where G is a p-variate, unit-covariance Gaussian random
vector and a is a random variable independent of G that
follows a x? distribution with m degrees of freedom. Repre-
sentation (2.3) reflects exactly the notion of superstatistics as
introduced by Beck and Cohen [10-16]: a ¢ Gaussian ran-
dom system with ¢>>1 can be interpreted as a Gaussian sys-
tem submitted to multiplicative fluctuations following an in-
verse y distribution.

A. The finite-covariance case

In the context of a random walk, we are interested in the
distribution of the normalized random vector

n
a=%2& (2.4)
V1 =1

where the random vectors X; e R” are independent and ¢
Gaussian distributed according to (2.1), each with m degrees
of freedom and covariance matrix K. The random vector Z,
can be characterized by the following theorem.

Theorem 1. A stochastic representation of random vector

is
" 12
Zn : am,n(E _> X

i=1 Vi

Z

n

(2.5)

where the p-variate vector X is ¢ Gaussian distributed with
nm degrees of freedom and covariance matrix K, where the
constant quantity @, ,=(1/n)\(m—=2)/(m—-2/n), while
{v,,...,v,} are Dirichlet distributed’ with parameters m,
=---=m,=m and independent of vector X.

Proof. We follow here the proof given in [18]: a linear
combination of Gaussian scale mixtures is itself a Gaussian
scale mixture since’

(2.6)

where G is a p-variate Gaussian vector with unit covariance.

'A random vector U is a Gaussian scale mixture if U=bG where
G is a Gaussian vector and b is a random positive variable indepen-
dent of G.

2Vector (vy,...,v,) has a Dirichlet distribution with parameters
(ay,...,a,) if its distribution has density f(vy,...,v,)
=[H;’=1F(ai)/r(§);’=1a,-)]vf“_l- . -vff’fl over the (n-—1)-dimensional
simplex 27 v;,=1, v;=0.

3= denotes equality in distribution; = denotes weak convergence.
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FIG. 1. ¢’ as a function of n for m=5 and ¢=5,3, and 1.5 (top

to bottom) on the three top curves; for m=10 and ¢=5,3, and 1.5

(top to bottom) on the three middle curves; for m=30 and ¢=5,3,
and 1.5 (top to bottom) on the three lowest curves.

Now we remark that random variables a; are x> distributed
with m degrees of freedom; thus, by Luckacs’ result [17],

each random variable »;=5 "= is independent of a;.
Moreover, equality (2.1) shows that the random variables
{vi}1<i<p-1 are Dirichlet distributed. Finally, since 27_a; is
)(2 distributed with mn degrees of freedom, we deduce that
(Vnm=2/ \e’m)A”zG/ V"E;’zlaj is a ¢ Gaussian vector with
covariance matrix K and mn degrees of freedom. |

An alternate proof that uses the more conventional Fou-
rier transform tool is given in the Appendix in the case n
=2; unfortunately, this purely analytical proof involves, even
in this simple case, a complicated integral formula whose
extension to an arbitrary value of n is, to our best knowledge,
not available.

A striking result is thus obtained: at its nth step, a ¢
Gaussian random walk with ¢>1 is a scale mixture of a ¢
Gaussian vector. We note that this property holds true for any
random walk with independent steps following a Gaussian
scale mixture. The fact that this property extends to g Gauss-
ian distributions is indeed remarkable. As described in the
preceding proof, this special behavior is a consequence of a
famous result by Lukacs [17] about the Gamma distributions,
which are precisely the ones that rule the fluctuations de-
scribed by the superstatistics theory [10-16].

Moreover, the nonextensivity parameter ¢’ of vector X in
(2.5) is related to the parameter ¢ of each step as

>n

1 2(g-1)
1= 2+mn-1)(g-1)"

(2.7)

We note that the dimension p of the random walk does not
appear in this formula.

The curves in Fig. 1 represent ¢’ as a function of n for (i)
m=5 and ¢=5,3, and 1.5 (top to bottom) on the three top
curves, (ii) m=10 and ¢=5,3, and 1.5 (top to bottom) on the
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FIG. 2. Estimated PDF of Us, (left) and U,s, (right) with n
=5,10,15,20, and 30 (bottom to top).

three middle curves, and (iii) m=30 and ¢=5,3, and 1.5 (top
to bottom) on the three lowest curves.

These curves confirm the three following results.

(1) Since the variance is finite, the central limit theorem
applies and Z, converges to a Gaussian vector with covari-
ance matrix K, and thus ¢’ converges to 1.

(2) The convergence to a Gaussian vector is all the faster
since the number of degrees of freedom m is large—or,
equivalently, since the independent steps X; are closer to
Gaussian steps.

(3) For a large enough value of m, the convergence pro-
cess of ¢’ to 1 is relatively insensitive to the value of g.

Unfortunately, the probability density for the scaling ran-

dom variable
n 1 1/2
Um,n = am,n(E _)

i=1 Vi

(2.8)

cannot be explicitly given. Figure 2 depict an estimation of
the probability distribution function for U,,, after n
=5,10,15,20, and 30 steps of the random walk in the cases
m=5 and 25. Note that different scales have been employed.
These figures clearly exhibit the convergence of the random
variable U,,, to the deterministic unit constant, as required
by the central limit theorem.
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B. The infinite-covariance case: Lévy flights

Let us assume now m <2 so that each of the steps of the
random walk has infinite covariance. Let us consider the un-
normalized random walk

Zn = E Xi~ (29)
i=1
The distribution of any component ng) of vector X;,
m+ 1
F( 2 ) )C2 —(m+1)/2
P e P e
m —
F(E)\WA/(,/( kik
behaves as
£ ~ ™y =+ o, (2.10)

so that the number of degrees of freedom m, for m=2, co-
incides with the Lévy index of the ¢ Gaussian distribution.
Now, by direct application of the Lévy-Gnedenko central
limit theorem [19-21] one immediately realizes that

S 172
1/mA Z,= S,

(2.11)
where S, denotes a vector, each component of which follows
a symmetric a-stable distribution with Lévy index m.

A quite interesting result worth quoting at this point is
that, although the involved variables have infinite covari-
ance, the superstatistics principle still applies in the follow-
ing fashion,

Theorem 2. For all n, the normalized random walk n~"""Z,
is distributed as a Gaussian scale mixture. Further, the distri-
bution of the mixing variable converges, as n— +%, to a
stable distribution with Lévy index a=m/2.

Proof. We use the first part of the proof of Theorem 1:

_ s L
;a/\ G.

One can easily check that each random variable 1/a; has
Lévy index m/2. Now, the Lévy-Gnedenko theorem yields

n

Z=2"1

AI/ZG

(2.12)

1 <1
e

i=1 %i

= Sm/Z’
so that
1 172
l/mZ = \SWL/ A G

|

Note that this result is coherent with the representation

(2.11) as given by the Lévy-Gnedenko theorem. Indeed, ac-

cording to a classical result about stable random variables

[22], if S, and S, denote two independent stable random
variables with respective indices a and «', then
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Va _.
SaSa, = Sa"

with @’=aa’. In the above situation, this result applies com-
ponentwise with =2 and a'=m/2.

Note also that the set of Lévy stable distributions and the
set of ¢ Gaussian distributions do not coincide, although
Lévy stable distributions are Gaussian scale mixtures [23]; in
fact, these sets have only two common elements: the Gauss-
ian distribution (with nonextensivity index g=1 and Lévy
index a=2) and the Cauchy distribution (with nonextensivity
index ¢=0 and Lévy index a=1). However, ¢ Gaussian and
Lévy distributions share the same heavy-tail asymptotic be-
havior: a ¢ Gaussian distribution with parameter ¢> 1 shows
the same asymptotic behavior fx(X) ~ |X|*1=9) as a Lévy dis-
tribution with parameter a=(3-¢)/(g-1).

III. THE CASE ¢<1

The p-variate ¢ Gaussian distribution in the case ¢<<1 is
written explicitly as

fx(X) =2, (1 - XA X)) (3.1)

with notation (x),=max(x,0). The covariance matrix of vec-

tor X is finite and is written K=EXX'=d'A with

d=p+2(2—¢)/(1-q). Moreover, the partition function Z, is
written

2_ -1
F(l q+§>
Z, = a

q 2_
r(—q)|m\|”2
l-¢

(3.2)

A stochastic representation of a vector X following this dis-
tribution is

AI/ZG
X= 77—,
VG'G+b

(3.3)
where the random variable b is x? distributed with
2(2—¢q)/(1—q) degrees of freedom and independent of the
p-variate, unit-variance Gaussian vector G. Let us consider
now the random walk

1 n
Z,=—=> X, (3.4)

V1 =1

where the random vectors X; are independent and follow
distribution (3.1).

Although, contrarily to the case g > 1, no explicit stochas-
tic representation can be provided for (3.4), this kind of ran-
dom walk can be given an interesting interpretation, as fol-
lows.

Theorem 3. If Y, is an isotropic d-dimensional random
walk [1]
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n
1
Yn = ?E Ti
7 =1

where T;e R? are independent random vectors with unit
length I7;=1 and uniformly distributed direction* and if

2-
2279 N (3.5)
I-¢q
then A=?Z, is the p-dimensional marginal of Y, with
2_
p=d-2—"14 (3.6)
l-q

Proof. A vector T; uniformly distributed on the sphere S,

has stochastic representation 7;= G/ |Gl where G € R? is a
Gaussian random vector with unit covariance. Thus stochas-
tic representation (3.3) shows that A~2X is the p-variate
marginal of T; (see [9]). |

In a physical context, this result can be interpreted as
follows: assume that we observe a p-dimensional g random
walk whose nonextensivity parameter ¢<<1 verifies condi-
tion (3.5); then a reasonable hypothesis is that one observes
only a part (some components) of a higher-dimensional ran-
dom walk, namely, a d-variate isotropic random walk with d
defined as in (3.6).

Another useful result about the ¢ Gaussian random walk
Z,, as defined by (3.4) with g<<1, is given by the following
theorem.

Theorem 4. If (i) Z, e R? is a g Gaussian random walk
with ¢<1 and (ii) {a;};<;=, are independent random vari-
ables [independent of all X;’s for 1=i=n in Eq. (3.4)] that
follow a y distribution with d degrees of freedom such that

9
d=p+2-—1 (3.7)
l-¢g
then the random walk
_ 1
= aX (3.8)
\1 =1

is a Gaussian random walk with independent steps, each with
covariance A.

Proof. The fact that each step a,X; is a Gaussian vector is
proved in [7]. The covariance matrix of a;X; is easily com-
puted as

1
E(aX;)(aX') = Ea’EXX! = d;A =A (3.9)
and the independence of the steps results from the assump-
tions. |

IV. CONCLUSIONS

We have proved here some results for random walks gov-
erned by distributions of the power-law type, summarized as
follows.

*In other words, each T; is uniformly distributed on the unit sphere
S,={X e RP[IIXII=1}.
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(1) In the case g>1 (Sec. II) we saw that a stochastic
representation of the point reached after n steps of the walk
can be expressed explicitly for all n.

(2) Moreover, Theorem 2 allows one to highlight the fact
that, even in the Lévy (infinite covariance) case, the super-
statistics framework still remains valid, a rather remarkable
result.

(3) In the case g<<1 (Sec. III), we ascertained that the
random walk can be interpreted as a projection of an isotro-
pic random walk, i.e., a random walk with fixed length steps
and uniformly distributed directions.

(4) Moreover, Theorem 4 shows that a ¢ Gaussian random
walk with ¢ <1, each step of which is subjected to indepen-
dent, multiplicative y-distributed fluctuations, is exactly a
Gaussian random walk, a fact that can qualify as dual super-
statistics.
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APPENDIX: THE FOURIER PROOF
OF THEOREM 1

A simple analytical proof of Theorem 1 based on charac-
teristic functions can be provided in the case n=2. We first
remark that, up to a left multiplication of (2.5) by matrix K~!,
it may be assumed without loss of generality that K=1,. The
characteristic function ¢y(u) of each X; is

PHYSICAL REVIEW E 74, 051124 (2006)

1-m/2

2
Al = s lutm = D)l m = D

so that the characteristic function of Z,=(1/ \e’E)(X 1 +X,) is

2-m m
N 2 u(m-2) ) ( u(m-2) )
= —— = K —_— .
It can be shown easily that the distribution of V

=\1/v,+1/v, is fﬁV):W%, v=2, so that the

characteristic function of W=VX, where X is ¢ Gaussian dis-
tributed with 2m degrees of freedom, is

Pdylu) =f flv) dx(uv)dv
2

~ 237" u(2m — 2)|mf+°°

F2(mr2) S Kollio|(2m = 2))do.

2 \v?-

The last integral can be expressed using [[24], 6.592.8] as
A 1 1
f ?Km[|uv|(2m -2)]dv = —Ki/2[|u|(2m -2)]
2 -4 2

so that the characteristic function of Zz=am!2v'1/ vi+1/1,X

is
m m— 2
Kfnn( 2 |”|> = ¢y(u)

2 2-m

2" | om=2
I%(m/2)

2

d7(u) =

u

so that Z, and Zz have the same distribution. Unfortunately,
we are not aware of any version of formula [[24], 6.592.8]
that would allow us to extend this proof to an arbitrary value
of n.
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